82 research outputs found

    Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications

    Get PDF
    A 1.5-kW CO2 laser in pulsed mode at 3 kHz was used to investigate the effects of varied laser process parameters and resulting morphology of AISI 316L stainless steel. Irradiance and residence time were varied between 7.9 to 23.6 MW/cm2 and 50 to 167 µs respectively. A strong correlation between irradiance, residence time, depth of processing and roughness of processed steel was established. The high depth of altered microstructure and increased roughness were linked to higher levels of both irradiance and residence times. Energy fluence and surface temperature models were used to predict levels of melting occurring on the surface through the analysis of roughness and depth of the region processed. Microstructural images captured by the SEM revealed significant grain structure changes at higher irradiances, but due to increased residence times, limited to the laser in use, the hardness values were not improved

    Influence of Yb:YAG laser beam parameters on Haynes 188 weld fusion zone microstructure and mechanical properties

    Get PDF
    The weldability of 1.2 mm thick Haynes 188 alloy sheets by a disk Yb:YAG laser welding was examined. Butt joints were made, and the influence of parameters such as power, size, and shape of the spot, welding speed, and gas flow has been investigated. Based on an iconographic correlation approach, optimum process parameters were determined. Depending on the distribution of the power density (circular or annular), acceptable welds were obtained. Powers greater than 1700 W, welding speeds higher than 3.8 m mm1, and spot sizes between 160 and 320 lm were needed in the circular (small fiber) configuration. By comparison, the annular (large fiber) configuration required a power as high as 2500 W, and a welding speed less than 3.8 m min�1. The mechanical properties of the welds depended on their shape and microstructure, which in turn depended on the welding conditions. The content of carbides, the proportion of areas consisting of cellular and dendritic substructures, and the size of these substructures were used to explain the welded joint mechanical properties

    Astrophysical Axion Bounds

    Get PDF
    Axion emission by hot and dense plasmas is a new energy-loss channel for stars. Observational consequences include a modification of the solar sound-speed profile, an increase of the solar neutrino flux, a reduction of the helium-burning lifetime of globular-cluster stars, accelerated white-dwarf cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We review and update these arguments and summarize the resulting axion constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3 figure

    Clinically relevant potential drug-drug interactions in intensive care patients: a large retrospective observational multicenter study

    Get PDF
    Purpose: Potential drug-drug interactions (pDDIs) may harm patients admitted to the Intensive Care Unit (ICU). Due to the patient's critical condition and continuous monitoring on the ICU, not all pDDIs are clinically relevant. Clinical decision support systems (CDSSs) warning for irrelevant pDDIs could result in alert fatigue and overlooking important signals. Therefore, our aim was to describe the frequency of clinically relevant pDDIs (crpDDIs) to enable tailoring of CDSSs to the ICU setting. Materials & methods: In this multicenter retrospective observational study, we used medication administration data to identify pDDIs in ICU admissions from 13 ICUs. Clinical relevance was based on a Delphi study in which intensivists and hospital pharmacists assessed the clinical relevance of pDDIs for the ICU setting. Results: The mean number of pDDIs per 1000 medication administrations was 70.1, dropping to 31.0 when con -sidering only crpDDIs. Of 103,871 ICU patients, 38% was exposed to a crpDDI. The most frequently occurring crpDDIs involve QT-prolonging agents, digoxin, or NSAIDs. Conclusions: Considering clinical relevance of pDDIs in the ICU setting is important, as only half of the detected pDDIs were crpDDIs. Therefore, tailoring CDSSs to the ICU may reduce alert fatigue and improve medication safety in ICU patients. ? 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    Paroxysmal Cerebral Disorder

    Coating by laser surface treatment

    No full text
    The application of optical engineering in industrial processing is gaining greater acceptance. The range of surface treatment processes available goes all the way from transformation hardening, annealing, shock hardening and bending (as processes which do not involve melting) to processes which involve melting such as surface melting, surface alloying, surface cladding and those processes which involve some form of photochemistry such as laser chemical vapour deposition, laser physical vapour deposition and stereolithography. One of these processes, laser cladding, has been recently extended at University of Liverpool to provide a technique of rapid alloy scanning whereby variable composition laser clad tracks can be laid down by the laser thus giving the whole range of compositions in the alloy system in a single sample. Evaluation of specimens of this type can be carried out by a range of micro testing techniques including corrosion testing procedures. Laser surface treatment processes available for the production of corrosion resistant surfaces are reviewed. These include surface melting, surface alloying and surface cladding procedures. Consideration is then given to the new variable composition laser melt track technique with particular reference to the rapid prototyping of corrosion resistant alloys

    In-Process Surface Monitoring for Laser Cleaning Processes using a Chromatic Modulation Technique

    No full text

    Angular laser cleaning for effective removal of particles. from a solid surface

    No full text

    Influence of heat treatment on the microstructure and properties of laser welds in 8090

    No full text
    An investigation into the weldability of the Al-Li-Cu-Mg-Zr alloy 8090 using a CO2 laser indicates that the grain structure and microstructure of the weld zone are sensitive to the post-weld heat treatment. If a slow heating rate of 1Kmin-1 to the solution treatment temperature is used the formation of β' dispersoids is promoted which leads to a uniformly small grain size within the fusion zone. If, however, faster heating rates are employed massive grains can form in the fusion zone. This is shown to be associated with a virtual absence of ß' precipitates
    corecore